Molecular topography imaging by intermembrane fluorescence resonance energy transfer.
نویسندگان
چکیده
Fluorescence resonance energy transfer (FRET) between lipid-linked donor and acceptor molecules in two apposing lipid bilayer membranes is used to resolve topographical features at an intermembrane junction. Efficient energy transfer occurs when the membranes are apposed closely, which creates an image, or footprint, that maps the contact zone and reveals nanometer-scale topographical structures. We experimentally characterize intermembrane FRET by using a supported membrane junction consisting of a glass-supported lipid membrane, onto which a second membrane is deposited by rupture of a giant vesicle. A series of membrane junctions containing different glycolipids (phosphatidylinositol and ganglioside G(M1)), protein (cholera toxin), and lipid-linked polyethylene glycol are studied. The carbohydrate and protein components influence the intermembrane separation. Differential FRET efficiency is clearly distinguishable for each case. Quantitative analysis of the FRET efficiency yields measurements of intermembrane-separation distances that agree precisely with structural data on G(M1) and cholera toxin. The lateral arrangement of molecular species on the membrane surface thus can be discerned by their influence on membrane spacing without the need for direct labeling of the molecule of interest. In the case of polyethylene glycol lipid-containing membrane junctions, imaging by intermembrane FRET reveals spontaneously forming patterns that are not visible in conventional fluorescence images.
منابع مشابه
Structure and dynamics of supported intermembrane junctions.
Supported intermembrane junctions, formed by rupture of giant unilamellar vesicles onto conventional supported lipid membranes, have recently emerged as model systems for the study of biochemical processes at membrane interfaces. Using intermembrane fluorescence resonance energy transfer and optical standing wave fluorescence interferometry, we characterize the nanometer-scale topography of sup...
متن کاملProtein patterns at lipid bilayer junctions.
We introduce a simple intermembrane junction system in which to explore pattern and structure formation by membrane-bound proteins. The junction consists of a planar lipid bilayer to which one species of protein (an IgG antibody) is bound, forming a 2D, compressible fluid. Upon the adhesion of a second lipid bilayer, the formerly uniformly distributed proteins rapidly reorganize into patterns o...
متن کاملIdentification and super-resolution imaging of ligand-activated receptor dimers in live cells
Molecular interactions are key to many chemical and biological processes like protein function. In many signaling processes they occur in sub-cellular areas displaying nanoscale organizations and involving molecular assemblies. The nanometric dimensions and the dynamic nature of the interactions make their investigations complex in live cells. While super-resolution fluorescence microscopies of...
متن کاملSnapshot of sequential SNARE assembling states between membranes shows that N-terminal transient assembly initializes fusion.
Many prominent biological processes are driven by protein assembling between membranes. Understanding the mechanisms then entails determining the assembling pathway of the involved proteins. Because the intermediates are by nature transient and located in the intermembrane space, this determination is generally a very difficult, not to say intractable, problem. Here, by designing a setup with s...
متن کاملFörster resonance energy transfer photoacoustic microscopy.
Förster, or fluorescence, resonance energy transfer (FRET) provides fluorescence signals sensitive to intra- and inter-molecular distances in the 1 to 10 nm range. Widely applied in the fluorescence imaging environment, FRET enables visualization of physicochemical processes in molecular interactions and conformations. In this paper, we report photoacoustic imaging of FRET, based on nonradiativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 22 شماره
صفحات -
تاریخ انتشار 2002